Enriching Active Databases with Agent
Technology

Johan van den Akker
Arno Siebes

CWI
P.0.Box 94079, 1090 GB Amsterdam, The Netherlands
e-mail: {vdakker,arno}@cwi.nl

Abstract. Intelligent agents are software components with a largely
autonomous behaviour, that are fitted out with a considerable degree
of artificial intelligence. They are a promising paradigm to serve as a
foundation for future computing environments in general, and informa-
tion systems in particular. At the same time database research has seen
the rise of active databases, database systems that add autonomous be-
haviour to a database. In this paper, we investigate the addition of no-
tions from intelligent agents to an active database. We explain why ac-
tive databases already implement weak agency, and look into the benefits
stronger agency can bring to an active database. It turns out that these
are mainly found in the increased flexibility facilitated by the reasoning
abilities strong agency implies. For example, an agent can have multiple
strategies to maintain a constraint instead of a one fixed strategy defined
by triggers.

1 Introduction

The ongoing miniaturisation of computers is leading us to a world, where com-
puters are omnipresent. This phenomenon has become widely known under the
name ubiquitous computing. Although this development is still in its early stages,
there is already some consensus on the software architecture for ubiquitous com-
puting. This consensus considers intelligent agents the most promising paradigm
for future information systems. In this paradigm, software consists of a number
of entities collaborating towards a common goal, functioning autonomously with
little intervention. Hence it is reasonable to expect that, in future computing en-
vironments, information systems will be based on a large number of cooperating
agents.

At the same time, research in databases, the traditional foundation of an infor-
mation system, has addressed the inclusion of additional modelling notions in
databases. This has lead, among other things, to active databases, i.e. databases
that include production rules. This allows databases to react autonomously to
certain situations in the database.

Since databases are the current foundation and agents a future foundation of
information systems, the question rises how information systems might evolve

from databases to agents. Since active databases are the first step in this evo-
lution, we examine the role agent technology can play in an active database.
The possibility of integrating agents in active databases was earlier mentioned
in [4], which compared active databases and agent systems. Its main focus, how-
ever, was on the similarity of concepts in both areas, whereas we look into the
opportunities agent technology offers active databases.

In this paper, we first identify the “level of agency” in a state-of-the-art active
database model. Then, we present our view on the benefits the addition of further

features of agent technology can bring to active databases.

2 Active databases

An active database [12] is a database that exhibits autonomous behaviour. That
is, it executes actions without explicit intervention from a user. This behaviour
is modelled by production rules, usually specified by an event-condition-action
triple. If the event occurs and the condition is satisfied, the action of a rule is
executed.

Originally, rules were introduced in databases in order to deal with constraints
more flexibly, but rules have found much wider use. In fact, large parts of an
application can often be specified by rules. The use of active databases has been
classified by Kappel and Schrefl in [7]. They categorise applications of rules as
follows:

maintaining static integrity constraints
maintaining derived data and materialised views
maintaining dynamic integrity constraints
database access authorisation

work step ordering

representing permissions to act

representing obligations to act

OOk W=

Of these seven, the first four are implementations of DBMS functionality. The
fifth is relatively specific to certain applications, esp. workflow management ap-
plications. It can be regarded as a special case of the third application. The last
two applications are forms of business rules. Business rules are a specification of
company policy, or a description of the behaviour of a company. Simple exam-
ples are rules in an inventory application, that reorder an item if the stock falls
below a certain level. More advanced business rules describes the competence of
persons in the organisation. These business rules are the rules used to specify
application functionality.

For the discussion in the remainder of the paper, we now introduce a state-of-
the-art active database model developed at CWI, named DEGAS!. Here, we will

! DEGAS stands for Dynamic Entities Get Autonomous Status

only give an impression necessary for the discussion in this paper. For a full
introduction the reader is referred to [1].

The core of DEGAS is formed by autonomous objects. Object autonomy means
that an object is as independent as possible, both in its behaviour and its spec-
ification. Thus, an autonomous object encapsulates its complete behaviour. Its
structure is given by attributes. The behaviour of a DEGAS object consists of
potential behaviour, specified by methods and lifecycles, and actual behaviour,
specified by rules. Methods specify the actions an object can execute, while an
object’s lifecycle specifies the possible execution sequences of its actions. Rules
specify actual actions of the object in specified situations. They are given in the
Event-Condition-Action format [6] commonly accepted in active databases.

An example of a DEGAS object is given in Figure 1. This object models an in-
vestor, who uses information from his newspaper to take decisions about his
share portfolio. The syntax of attributes and methods is straightforward. The
attributes specify the information stored by the investor, such as his name and
birth data, the identity of his shares and his newspaper, and the currently per-
ceived “reasonable” price for his shares. The methods specify the possible actions
of the investor. He has methods to sell his shares and methods to deal with good
and bad news about his shares.

Lifecycles are defined using process algebra [3] extended with guard conditions.
In process algebraic terms, the process executed by the object must be a trace
of the process specified by the lifecycle. For a further discussion of lifecycles
in DEGAS, the reader is referred to [2]. In this example, the lifecycle regulates
two things, sequence and access to methods. The first lifecycle specifies that a
tryToSell action must always be followed by a Sell action or a cancelSupply
action. The latter action withdraws an offer to sell shares that did not succeed.
The two other lines in the lifecycle specification restrict access to the goodNews
and badNews actions to the subscribed newspaper.

The event specification of a rule is also a process algebraic expression. The
condition can be any condition on the object, while the action is a method call,
either on the object itself, or to another object. After each method execution, the
rule set of an object is checked against the object’s history. If the specified event
did occur and the rule’s condition is satisfied, the action is executed. For each
event, a variable is bound to the time the event occurred. This timestamp can
be used in the condition to refer to historical values of the object’s attributes.
For example, the first rule of the investor object specifies that he tries to buy
additional shares, if good news breaks twice within a week.

Interaction between objects takes place through message passing. In addition,
objects can engage in relations. Relations allows objects to share and exchange
information on a more permanent basis. More on the subject of relations between
objects in DEGAS can be found in [1].

Object Investor
Attributes
name : string
birthday : time
birthplace : string
share : Oid
subscription : Oid
transactionPrice : real
Methods
tryToSell(company:string, number:integer, minPrice:real) = {
SupplyClass.initiateShareholder(company,number,minPrice)
}

Sell(buyer,price) = {
share.transferOwnership(buyer,price)
Supply.drop

}

cancelSupply = {

Supply.drop

goodNews(company : string) = {
transactionPrice = subscription.priceAdvice(company)

badNews(company : string) = {
transactionPrice = subscription.priceAdvice(company)
}

Lifecycles
(tryToSell;(Sell+cancelSupply))*
([sender==subscription]goodNews™)
([sender==subscription]badNews")
Rules
On goodNews(company)(t1);goodNews(company)(t2)
if to —t1 < 7 days
do tryToBuy(company,transactionPrice)
On badNews(company)(t1);badNews(company)(t2)
if (t2 — t1) < 7 days && transactionPrice(t2) < transactionPrice(t1)
do tryToSell(transactionPrice)
On goodNews(t1);badNews(t2)
if t; — t1 < 7 days && transactionPrice(t1) == max(transactionPrice, t1,t2)
do tryToSell(transactionPrice)
EndObject

Fig. 1. An investor modelled in DEGAS

3 Agency in Active Databases

In the previous section, we saw a state-of-the-art active database model based
on objects with considerable autonomy. Hence, we could say that these objects
are simple agents. In this section, we identify the level of agency offered by active
databases in general, and DEGAS in particular.

Research on agents generally distinguishes weak and strong agency. A software
system is said to have weak agency, if it possesses the following four properties
[13]:

— autonomy
social ability
reactivity

— pro-activeness

Object autonomy is one of the base assumptions in DEGAS. Each DEGAS object
is itself a process. Furthermore, its dependence on other objects is as small as
possible through complete encapsulation and minimal assumptions about the be-
haviour of other objects. Hence, the criterion of autonomy is satisfied by DEGAS
objects. Social ability means that agents interact with other agents in the sys-
tem through an agent communication language. DEGAS objects pass messages
to other objects and engage in relations with them. DEGAS objects react to their
environment by answering messages. Furthermore, rules also specify reactions to
situation that occur in the DEGAS database. Pro-activeness means that agents
can take the initiative to achieve certain goals. Although goals are not explicit
in a DEGAS object, active rules are instrumental to achieving a goal.

There is less consensus over stronger levels of agency. In general, strong agency
is concerned with mentalistic notions. For the discussion in this paper, we take
the four dimensions formulated by Shoham [9]:

— knowledge
— belief

— intention
— obligation

These notions are not explicitly supported by DEGAS objects. Although rules can
be used to express obligations, they are not formulated as such. An obligation
of an agent is specified by a goal that must be achieved. Instead an ECA rule is
just an instruction to execute a certain action in a specified situation, although
this action will be instrumental in fulfilling the obligation.

Likewise intention is only implicitly present, and as far as it is present, not arrived
at by the DEGAS object itself. We could say, that a rule to maintain a database
constraint expresses the intention to maintain that constraint. Intention and
instrument to realise this intention, however, are fixed to each other. If intention

is an independent notion to an agent, it first derives its intention and then reasons
about the actions to realise it.

Knowledge and belief are unknown notions in an active database. Although a lot
of information is stored, the way to process these data is fixed by the methods
and rules specified. Furthermore, a database usually lacks the ability to reason
with and about the information it contains in a general way.

4 Extending the Level of Agency in an Active Database

In the previous section, we saw that DEGAS supports weak agency. In addition,
limited representation of obligation and intention are present. In this section, we
look at the potential results of extending the level of agency in an active database,
taking DEGAS as a starting point. In particular, we consider the benefits of
stronger agency for general database functionality.

Stronger agency is introduced in an active database by extending the capabil-
ities of the objects in the database. While DEGAS currently is a database of
autonomous objects, we would then have a database of agents. The agents in
such a database? each manage a part of real world data, like an object represents
a piece of data. This means that an agent contains a piece of data, and addition-
ally possesses a number of goals it has to achieve or maintain. Furthermore, a
data agent will have a number of obligations. In part, these will exist to facilitate
DBMS functionality, e.g., an obligation to answer queries. Another part of the
obligations will be to other agents, caused by relations between agents.

The key advantage of the promotion of autonomous objects to agents lies in
the reasoning ability of agents. This allows a more abstract specification of the
database, both in application modelling and in implementing database function-
ality. Triggers implement a tight binding between goals and means, so that an
object has only one means achieve a specific goal. By formulating goals and
means separately, more flexible solutions are possible for a lot of information
systems functionality.

A prime example of the additional flexibility provided by separate goals and
means is given by constraints. In Section 2, we mentioned that triggers were
originally devised to deal with constraints more flexibly. The improvement trig-
gers offered over existing mechanisms was, that we could use different strategies
to maintain different constraints, instead of a single strategy for all constraints.
Strong agency, by separating goals and means, gives us additional flexibility by
allowing multiple strategies to maintain a single constraint. The agent can then
infer which strategy is optimal in the current situation. In addition, the pres-
ence of general problem-solving strategies in the database obviates the need for
specialised compilers, e.g., to produce rules to maintain constraints [5].

2 or would we have to call it a data management society?

As an example consider the limit on the negative balance of a bank account. A
limit of 2000 in the red is specified by the constraint:

balance > —2000

Suppose now that a requested payment violates this constraint. In this situation,
we have a number of strategies to enforce this constraint, of which we mention
four:

1. Refuse the payment

2. Transfer funds from a savings account
3. Sell some shares

4. Arrange a temporary loan

If we were to use triggers, we can specify only one action to enforce the limit on
this account. With its enhanced reasoning capabilities, an agent can choose the
best strategy to enforce this constraint, given its other goals, such as the quality
of its relation with the customer, income in the near future etc.

Another advantage of stronger agency over triggers, is found in the problem of
deciding termination of trigger sets. In general, we can decide termination only
for very simple trigger languages [10]. Such languages, however, are too simple
for most applications. Hence, we must find another way of dealing with this
problem than deciding it in advance or imposing conservative pre-conditions on
trigger sets. Stronger agency can help counter the problem of non-termination in
two ways. First, the separation of multiple means to achieve the goal of a trigger,
allows an agent to choose another means to achieve its goal, if the means orig-
inally chosen has undesirable side-effects. Second, not every possible execution
of a non-terminating trigger set is non-terminating. This means, that the agents
can cooperate to avoid the non-terminating execution sequence of their triggered
actions.

As an example, consider the trigger activation graph given in Figure 2. In this
graph the nodes are database states and the edges are trigger executions. For
example, in database state ¢ trigger t3 is triggered, whose execution brings the
database in state e. The trigger set in this graph is non-terminating, since there
exists a cycle of triggers t2 and t¢1 in this activation graph, which keeps the
database shuttling between database states b and ¢. We can easily see, however,
that there is also a terminating execution sequence for this trigger set, viz., the
sequence t1;t3;¢2;t1 that leads to the stable state f.

The advantages given above of strong agency over the weak agency in an active
database also apply to dynamic database constraints. In DEGAS, the dynamic
constraints of an autonomous object are given by the lifecycles. This lifecycle is
fixed. Hence, a message that does not fit in the lifecycle is rejected outright. If an
autonomous object had higher level reasoning facilities, it would be possible to
negotiate a deal with the sending agent. For example, the receiving object might

a
(1
b d
t3
2| |t 2
¢ e
t3

G of

1

Fig. 2. A trigger activation graph

give an indication of the time when it will be able to execute the requested
action. The sending object can then decide, depending on its other goals and
obligations, whether it can wait or take another course to achieve its goal.

If negotiations between agents are to take place between different agents in
the databases, we need, besides a language to conduct the negotiations in, a
measure of the value of the different propositions being negotiated. This implies
the use of a monetary model. The use of such a model is experimented in a
somewhat different context by Stonebraker in the Mariposa system [11]. Here,
the allocation of data storage and query processing in a distributed database
is managed through a bidding system. The fixed bidding protocol in Mariposa,
however, leads to undesirable effects in the allocation of data. In fact, it turns
out that the richest site will end up with all the data, which means that it only
gets richer by consequently under-bidding the other sites for query processing.
Clearly, more sophisticated bidding and negotiation protocols are needed, which
leaves the components (agents) in the database more room for manoeuvring
to avoid undesired outcomes. For example, in the example of the richest site
taking all data, the other sites might temporarily adopt a “dumping” strategy,
i.e. working at a loss in order to gain back work and data.

The examples given of agents working out solutions for databases problems by
negotiating between themselves, can only work under certain assumptions about
their intentions. As research in game theory has shown [8], it is difficult to
come up with strategies without undesirable outcomes, if not all players are
cooperative. Therefore, agent research often assumes, as Shoham does [9], the
veracity and benevolence of agents towards each other. This assumption cannot
be held if agents in our information system must interact with agents owned
by other people or organisations. Hence, agent research must find a solution for
dealing with uncooperative, lying and malevolent agents in order to be able to

form the foundation of an information system, or an information infrastructure
in general.

Further potential of agent technology in databases is found on the architectural
side. If agent technology matures enough to form the basis of a database man-
agement system, this will implicate a large gain in flexibility of a DBMS. The
different components of a DBMS, such as query optimiser, storage manager, etc.,
can each be an agent with its own goals and strategies. Besides the increased
flexibility of the individual components, this also means increased freedom for a
systems designer to choose the components constituting his DBMS.

5 Conclusions

In this paper, we discussed the autonomous behaviour that active databases add
to traditional databases. We saw that DEGAS, a state-of-the-art active database
model, implements weak agency, since DEGAS objects interact with each other,
react to their environment, and autonomously pursue their defined goals. These
functions, however, are limited by their fixed, pre-programmed character.

The extension of autonomous DEGAS objects to stronger agents with general
purpose reasoning abilities greatly increases the adaptability and flexibility of
an active database system. The improvements originate in the ability to adapt
strategies to the actual situation, and the ability of agents to cooperate with each
other. Hence, the incorporation of agent technology in databases opens up new
perspective in tackling long-standing database issues. Increased coupling and
inter-operation of information systems, however, also poses some new challenges
for agent technology in order to deal with lying or malicious agents from outside.

References

1. Johan van den Akker and Arno Siebes. DEGAS: Capturing dynamics in objects.
In P. Constantopoulos, J. Mylopoulos, and Y. Vassiliou, editors, Advanced Infor-
mations Systems Engineering - Proc. of CAiSE’96, pages 82-98, Heraklion, Crete,
Greece, May 1996. Springer. LNCS 1080.

2. Johan van den Akker and Arno Siebes. Object histories as a foundation for an
active OODB. In R. Wagner and H. Thoma, editors, Proceedings of the 7th In-
ternational Workshop on Database and Expert Systems Applications (DEXA’96),
pages 2-8, Ziirich, Switzerland, 1996. IEEE Computer Society.

3. J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge,
UK, 1990.

4. James Bailey et al. Active databases and agent systems - a comparison. In Timos
Sellis, editor, Proc. of the 2nd Intl. Workshop on Rules in Databases (RIDS’95),
pages 342-356, Athens, Greece, 1995. Springer. LNCS 985.

5. Stefano Ceri and Jennifer Widom. Deriving production rules for constraint main-
tenance. In D. MacLeod, R. Sacks-Davis, and H. Schek, editors, Proceedings of the
16th International Conference on Very Large Data Bases, pages 566-577, 1990.

10.

11.

12.

13.

U. Dayal et al. The HiPAC project: Combining active databases and timing con-
straints. SIGMOD Record, 17(1):51-70, March 1988.

Gerti Kappel and Michael Schrefl. Modeling object behavior: To use methods or
rules or both? In R. Wagner and H. Thoma, editors, Proceedings of the 7th In-
ternational Conference on Database and Ezpert Systems Applications (DEXA’96),
pages 584-602. Springer, 1996. LNCS 1134.

Jeffrey S. Rosenschein and Gilad Zlotkin. Designing conventions for automated
negotiation. AI Magazine, 15(3):29-46, 1994.

Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92,
1993.

A.P.JM. Siebes, J.F.P. van den Akker, and M.H. van der Voort. (un)de-
cidability results for trigger design theories. Technical Report CS-R9556,
CWI, Amsterdam, The Netherlands, 1995. Available through WWW
(http://www.cwi.nl/"vdakker/).

Michael Stonebraker et al. Mariposa: A wide-area distributed database system.
VLDB Journal, 5(1):48-63, 1996.

Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers and Rules
for Advanced Database Processing. Morgan Kaufmann, San Francisco, CA, USA|
1995.

Michael Wooldridge and Nicholas R. Jenning. Intelligent agents: theory and prac-
tice. The Knowledge Engineering Review, 10(2):115-152, 1995.

This article was processed using the IXTgX macro package with LLNCS style

